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Principle of Least-Action

The starting point is the action, denoted S of a physical system. It is defined as the integral of the

Lagrangian L between two instants of time t; and f, —technically a functional of the N generalized coordinates q = (g4, go,

... » ) which define the configuration of the system:

q:R > RV
to

Sla t1, 2] = / Lia(t), &(t), )dt

where the dot denotes the time derivative, and tis time.

Mathematically the principle
58S =0,

where O (lowercase Greek delta) means a small change. In words this reads:
The path taken by the system between times t, and t, and configurations q, and q. is the one for which the action is

stationary (no change) to first order.

In applications the statement and definition of action are taken together
to

) L(q,q,t)dt = 0.
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f = thrust

g = gravity

f—mg =mz. (8.4)

We now apply the Lagrangian formalism to derive the same result. The kinetic
energy is mz?/2, the potential energy is mgz, and the Lagrangian is

1

L(z,2)=K(z,2)—P(x) = §mi’,2 — mgz. (8.5)

The equation of motion is then given by

d oL 0L
— = 7" _my 8.6
I=Go: " or ™M (8.6)
which matches Equation (8.4).
— Lynch and Park




Lagrangian mechanics of kinematic chains

ms

Fully actuated mechanical systems

d OL 0L
dt 0q; 0q;
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274 8.1. Lagrangian Formulation

the ends of each link. The position and velocity of the link-1 mass are then
given by

[ I ] . [ Ll (30891
|y | | Lisin6; |’
[ Gy ] [ —Lysinf; | -
. = ] 019
i U1 ] i Ll C70891
while those of the link-2 mass are given by
[ 1o | B [ Licosf; + Lo cos(61 + 62)
| y2 | | Lisinfy + Lysin(0, +63) |’
[ To | . [ —Lysinf; — Lo 8111(91 + 92) —Lo 8111(91 + 92) 91
| U2 - | Licosty + Lacos(01 +02)  Lacos(fy + 62) 0> |-

We choose the joint coordinates 8 = (61,602) as the generalized coordinates.
The generalized forces 7 = (71, 72) then correspond to joint torques (since 716
corresponds to power). The Lagrangian £(6,0) is of the form

2

L(0.0) = Z(’Cz‘ —Pi), (8.7)

=1

where the link kinetic energy terms K; and Ko are

TP Ty
Ki = §m1(I?+yf)=§m1L%9%
1 ) .
Ky = §m2(l’§+y§)

1 : . )
= 51112 ((Lf + 2L Lo cos s + L%)B% — 2(L§ + L1L3cosf2)0102 + Lg@g) ,
and the link potential energy terms P; and Ps are

P1. = mugy; = mygL;sinfy,
P = magys = mog(Lysinfy + Lasin(0; + 62)).



Underactuated (super-articulated) mechanical systems
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The pendubot

—D.J. Bloch & M. Spong
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Figure 3.1 Coordinate Description of the Pendubot. 1; is the length of link
one, l;; and 1, are the distances to the center of mass of the respective links
and q; and q, are the joint angles of the respective links.

The equations of motion for the Pendubot can be found using Lagrangian dynamics
[5]. In matrix form the equations are
D(q)§ +C(q:9)g+8(q) =7 (3.1)
where 7 is the vector of torque applied to the links and q is the vector of joint angle positions
with
(d. d,] d,=ml} +m,(I} +1’, +2L1,cosq,)+1, +1,

D(q) =[ J d\, =d, =my(I;, +11, cosq,) +1, (3.2)
dy dy )
dy =myl;, +1,



