ME/SE 740

Lecture 8

Matrix Exponentials

Motivation for today’s lecture: In robotics we frequently encounter the rotation of some rigid body about some
given axis by some amount. Consider the rotation of some link about the z-axis as shown below:

- unit length link rotates
=" about z-axis in x-y plane

p(0) p(t)  position of tip
attimet

position of tip

attime 0

Figure 1: Link Rotating

Suppose 6(t) is the rotation angle in radians and suppose the link rotates at a constant, unit velocity, so that:
O(t) = t, 0(t) = 1. As a result, the coordinate of the link tip at time ¢t = 0 and ¢ = 1 can be respectively
expressed as:

1 cost
p(0) = [ 0], p(t) = | sint
0 0
The velocity of the tip is therefore given by:
—sint
p(t) = cost
0

Which can be be expressed as:



0 -1 0 cost 0 -1 0
p(t) = 1 0 0 sint = 1 0 0 |p()
0 0 0 0 0 0 O
—_—————
A
p(t) = Ap(t)

This is a differential equation in state-space form with A being a constant matrix.

In general, if the axis of rotation is given by some unit vector:

w1

w = wa

w3

one can show that:

0 —w3 W2
pt) = ws 0wy | p(t)= wxp(t)
w2 w1 0 cross product

A

Again a differential equation in state-space form:

z(t) = Az(t) z(0) = xo
If we know p(0) and w, we can compute p(¢) by solving this differential equation.

Theorem 0: Let A be an n X n matrix with constant entries and let the sequence of matrices be defined recur-
sively as follows:

My =1
t

k> 1, Mk(t,O) = I+/ AMk_l(O',O)dCT
0

The the sequence of matrices My, M1, Ms, - -+ converges uniformly on any time interval 0 < t < t;. Moreover, if
the limit is defined as ®(¢,0) (i.e., ®(¢,0) = limg_ oo My(¢,0)) then for 0 < ¢ < t;:

dd(t,0)
dt

and the solution of &(t) = Az(t), x(0) = xo, is given by z(t) = ®(¢,0)zo.

= A®(t,0), ®(0,0)=1

Before we prove this theorem it will be helpful if we recall some basic facts/definitions/statements from the
theory of convergence of sequences of functions.

D/F/S 1: Let f;(t) be a sequence of scalar real valued functions defined on the interval T : 0 < ¢t < ¢;. A
sequence of functions fi(t), f2(t), - - define on T, is said to converge (pointwise) to some function f(t) if



f@) = lm f,(t) for every teT

n—oo

D/F/S 2: A sequence is said to converge uniformly to f(¢) on T, if for every e > 0, there exists an N (depending
on € not t) such that for n > N

[fn(t) — f(t)| <€ for every teT

D/F/S 3: A series of functions fi(t) + f2(t) + f5(t) + - -+ defined on T is said to converge to a function f(t) if
the sequence of partial sums {s;(t)} converges to f(¢) where:
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s2(t) = f1(t) + fa(t) +- -+ fult)

D/F/S 4: The series f1(t)+ fa(t)+ f3(t)+- - - converges uniformly to f(t) on T, if the sequence {s;(t)} converges
uniformly to f(t) on T.

D/F/S 5: Theorem (Weirstrass M-test). Let {K,} be a sequence of non-negative numbers such that 0 <
|frn(t)] < K, for n=1,2,3,--- and every t € T. Then the series fi(t) + f2(t) + f3(t) + - - - converges uniformly
to f(t) on T if Ky + Ko+ K3+ -+ converges.

D/F/S 6: Let A, B, Ay, A, -+, A be n X n matrices with constant entries. Denote the i,j element of some
matrix A as Ez,J(A) Let a = max;, ; ‘Ei,j(A)L ﬁ = Inax; ; |El’J(B>|, Qp = max;, ; |E27](Ag)‘ Then

|Eij(AB)] < nafp
—_———

i,j element of AB

With A = (a;;), B = (b;;) then:

lai1bij + ai2baj + -+ a5 nbn | < lagiby gy + lai2bej| + -+ |a;nbn

i,j element of AB
< laia||br;| + lai,2lb2,;
<aB+aB+---af
< naf

+ o fainl[bn

In general (via a proof by induction) one can show:

|E; j(A1Ag - Ap)| < " lajasg -y

proof of the Theorem




Stepl: Obtain expressions for the sequence of matrices My(t,0), My (¢,0), My(¢,0), - -

My(t,0) =1
t t
Ml(t,O):I—i—/ Ad0=I+A/ 1do
o=0 o=0
=1+ At
t t t
My(t,0) =1 +/ AM;(0,0)do = I—|—/ Al + Ao)do =1 +/ A+ A%odo
o=0 o=0 o=0
=T+ At + %A%Z
t t 1
M3(t,0) = I+/ AM2(0'70)dO' = I—l—/ A(I+ Ao + §A20)d0
o=0 o=0

1 1
=T+ At + = A%2 + — A3
tatt g t33

Continuing in this manner we can write for & > 1:

1 1 1
Mp(t,0) =T+ At + —A%2 + —— A33 + ... 4+ = ARk
x(t,0) +AL+ 5 +53 +o g

Step 2: Mj(t,0) is a sum of n x n matrices and the (4, j) element of its k + 1 term can be bounded as follows for
any ¢t in 0 <t <t; (employing D/F/S 6):

1

1
|Ei i (5

ARR)| < @tklEm‘(Ak)l
1 k_k—1_k
< mt n" o
< ltknk—lak
gt

So each element of ; A¥t* is bounded from above by the constant & tfn*~1a*.

Step 3: This allows us to employ the Wierstrass M-test. Consider the series { K} }:

n(at)?  n?(aty)?

1+ ot + o 3l + -
1 n?(at1)?  n(aty)?
— 14 —(nat .
+ n(na 1+ ol + 30 )
1
— 1 —(,naty 1
+ Leman _1)

As we see the series of constants converges which implies that the sequence {Mj(t,0) converges uniformly on 7T
We call this limit the “transition matrix.”



1 1.
®(t,0) = limp_yoo My, (t,0) = I + At + 5A%Q + gA%?’ 4+

It is a special case of the Peano-Baker series (A here a constant matrix), and we also denote it as :

1 1
eAt:I+At+§A2t2+§A3t3+---

and define it as the “matrix exponential.” Now, differentiating with respect to time term by term we obtain:

deA?t 1 1
=0+ A+ A%+ A3+ — A+ ...
7 + A+ + 3 + 5.3 +
1 1
= AT+ At + A+ — A3 4 ...
(+t+2t+2.3t+)
= Aet
and where e4? = (0,0) = I.
Furthermore,
de?tzg A
= A t
dt o2
z(t)

(*)  z(t) = Az(t), x(0) =g

Therefore, x(t) = e*x is the solution of (x) above. We also can prove (not here) that this solution is unique.

Note: Since this is a “time-invariant” differential equation (A is constant), if the initial time is not 0 but rather
to, the solution to (x) is given by:

z(t) = B(t, to)zo = ey

An Important Property of ®(¢,t,), for arbitrary to,¢1,¢.

O(t,t0) = ®(t,t1)P(t1,t0)

Proof: The unique solution of:

() @) = Az(t),  x(to) = w0

is given by Z(t) = ®(t,t0)xo. Suppose that at time t1,Z(t1) = x1. Consider again equation (x) and develop its
solution for initial condition z; at time ¢;. In particular, we can write: Z(t) = ®(¢,¢1)z;1. Since the solution to



(%) is unique (both solutions pass from z; at time ¢1) we must have for all ¢,¢, ¢y and all o that:

This implies:

(I)(t,to)Io = q)(t,tl)l‘l
(I>(t7t0)x0 = <I>(t7t1)<I>(t1,t0)x0
®(t,to) = (t, 1)@ (t1, t0)

In particular, let t = tg, and t; = 0,t; = 1. This becomes:

and we conclude that e” is invertible for any constant matrix A. This is a very important result that we
state as a Theorem:

Theorem 1: Le A be some n x n real matrix. Then e £ exp(A) is an invertible matrix:
exp(A): A — e € Gl(n,R)
Let the set of n x n skew symmetric matrices (i.e., A = —AT) be denoted by so(n).

Proposition: Let A € so(n). Then e is an orthogonal matrix (i.e., e? - (e?)? = I.

proof: From Theorem 1 above we know that e? is invertible. In fact,

since —A = AT

directly from the Peano-Baker series.



