
ME/SE 740

Lecture 8

Matrix Exponentials

Motivation for today’s lecture: In robotics we frequently encounter the rotation of some rigid body about some
given axis by some amount. Consider the rotation of some link about the z-axis as shown below:

Figure 1: Link Rotating

Suppose θ(t) is the rotation angle in radians and suppose the link rotates at a constant, unit velocity, so that:
θ(t) = t, θ̇(t) = 1. As a result, the coordinate of the link tip at time t = 0 and t = 1 can be respectively
expressed as:

p(0) =

 1
0
0

 , p(t) =

 cos t
sin t

0


The velocity of the tip is therefore given by:

ṗ(t) =

 − sin t
cos t

0


Which can be be expressed as:
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ṗ(t) =

 0 −1 0
1 0 0
0 0 0

 cos t
sin t

0

 =

 0 −1 0
1 0 0
0 0 0


︸ ︷︷ ︸

A

p(t)

ṗ(t) = Ap(t)

This is a differential equation in state-space form with A being a constant matrix.

In general, if the axis of rotation is given by some unit vector:

w =

 w1

w2

w3


one can show that:

ṗ(t) =

 0 −w3 w2

w3 0 w1

−w2 w1 0


︸ ︷︷ ︸

A

p(t) = w × p(t)︸ ︷︷ ︸
cross product

Again a differential equation in state-space form:

ẋ(t) = Ax(t) x(0) = x0

If we know p(0) and w, we can compute p(t) by solving this differential equation.

Theorem 0: Let A be an n× n matrix with constant entries and let the sequence of matrices be defined recur-
sively as follows:

M0 = I

k ≥ 1, Mk(t, 0) = I +

∫ t

0

AMk−1(σ, 0)dσ

The the sequence of matrices M0,M1,M2, · · · converges uniformly on any time interval 0 ≤ t ≤ t1. Moreover, if
the limit is defined as Φ(t, 0) (i.e., Φ(t, 0) = limk→∞Mk(t, 0)) then for 0 ≤ t ≤ t1:

dΦ(t, 0)

dt
= AΦ(t, 0), Φ(0, 0) = I

and the solution of ẋ(t) = Ax(t), x(0) = x0, is given by x(t) = Φ(t, 0)x0.

Before we prove this theorem it will be helpful if we recall some basic facts/definitions/statements from the
theory of convergence of sequences of functions.

D/F/S 1: Let fi(t) be a sequence of scalar real valued functions defined on the interval T : 0 ≤ t ≤ t1. A
sequence of functions f1(t), f2(t), · · · define on T , is said to converge (pointwise) to some function f(t) if
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f(t) = lim
n→∞

fn(t) for every t ∈ T

D/F/S 2: A sequence is said to converge uniformly to f(t) on T , if for every ε > 0, there exists an N (depending
on ε not t) such that for n > N

|fn(t) − f(t)| < ε for every t ∈ T

D/F/S 3: A series of functions f1(t) + f2(t) + f3(t) + · · · defined on T is said to converge to a function f(t) if
the sequence of partial sums {si(t)} converges to f(t) where:

s1(t) = f1(t)

s2(t) = f1(t) + f2(t)

...

s2(t) = f1(t) + f2(t) + · · ·+ fn(t)

D/F/S 4: The series f1(t)+f2(t)+f3(t)+· · · converges uniformly to f(t) on T , if the sequence {si(t)} converges
uniformly to f(t) on T .

D/F/S 5: Theorem (Weirstrass M-test). Let {Kn} be a sequence of non-negative numbers such that 0 ≤
|fn(t)| ≤ Kn for n = 1, 2, 3, · · · and every t ∈ T . Then the series f1(t) + f2(t) + f3(t) + · · · converges uniformly
to f(t) on T if K1 +K2 +K3 + · · · converges.

D/F/S 6: Let A,B,A1, A2, · · · , Ak be n × n matrices with constant entries. Denote the i, j element of some
matrix A as Ei,j(A). Let α = maxi,j |Ei,j(A)|, β = maxi,j |Ei,j(B)|, α` = maxi,j |Ei,j(A`)|. Then

|Ei,j(AB)|︸ ︷︷ ︸
i,j element of AB

≤ nαβ

With A = (ai,j), B = (bi,j) then:

|ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j |︸ ︷︷ ︸
i,j element of AB

≤ |ai,1b1,j)|+ |ai,2b2,j |+ · · ·+ |ai,nbn,j |

≤ |ai,1||b1,j |+ |ai,2||b2,j |+ · · ·+ |ai,n||bn,j |
≤ αβ + αβ + · · ·αβ
≤ nαβ

In general (via a proof by induction) one can show:

|Ei,j(A1A2 · · ·Ak)| ≤ nk−1α1α2 · · ·αk

proof of the Theorem
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Step1: Obtain expressions for the sequence of matrices M0(t, 0),M1(t, 0),M2(t, 0), · · ·

M0(t, 0) = I

M1(t, 0) = I +

∫ t

σ=0

Adσ = I +A

∫ t

σ=0

1dσ

= I +At

M2(t, 0) = I +

∫ t

σ=0

AM1(σ, 0)dσ = I +

∫ t

σ=0

A(I +Aσ)dσ = I +

∫ t

σ=0

A+A2σdσ

= I +At+
1

2
A2t2

M3(t, 0) = I +

∫ t

σ=0

AM2(σ, 0)dσ = I +

∫ t

σ=0

A(I +Aσ +
1

2
A2σ)dσ

= I +At+
1

2
A2t2 +

1

2 · 3
A3t3

Continuing in this manner we can write for k ≥ 1:

Mk(t, 0) = I +At+
1

2
A2t2 +

1

2 · 3
A3t3 + · · ·+ 1

k!
Aktk

Step 2: Mk(t, 0) is a sum of n×n matrices and the (i, j) element of its k+ 1 term can be bounded as follows for
any t in 0 ≤ t ≤ t1 (employing D/F/S 6):

|Ei,j(
1

k!
Aktk)| ≤ 1

k!
tk|Ei,j(Ak)|

≤ 1

k!
tknk−1αk

≤ 1

k!
tk1n

k−1αk

So each element of 1
k!A

ktk is bounded from above by the constant 1
k! t

k
1n

k−1αk.

Step 3: This allows us to employ the Wierstrass M-test. Consider the series {Kk}:

1 + αt1 +
n(αt1)2

2!
+
n2(αt1)3

3!
+ · · ·

= 1 +
1

n
(nαt1 +

n2(αt1)2

2!
+
n3(αt1)3

3!
+ · · · )

= 1 +
1

n
(enαt1 − 1)

As we see the series of constants converges which implies that the sequence {Mk(t, 0) converges uniformly on T .
We call this limit the “transition matrix.”
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Φ(t, 0) = limk→∞Mk(t, 0) = I +At+
1

2
A2t2 +

1

3!
A3t3 + · · ·

It is a special case of the Peano-Baker series (A here a constant matrix), and we also denote it as :

eAt = I +At+
1

2
A2t2 +

1

3!
A3t3 + · · ·

and define it as the “matrix exponential.” Now, differentiating with respect to time term by term we obtain:

deAt

dt
= 0 +A+A2t+

1

2
A3t2 +

1

2 · 3
A4t3 + · · ·

= A(I +At+
1

2
A2t2 +

1

2 · 3
A3t3 + · · · )

= AeAt

and where eA·0 = Φ(0, 0) = I.

Furthermore,

deAtx0
dt

= AeAtx0︸ ︷︷ ︸
x(t)

(?) ẋ(t) = Ax(t), x(0) = x0

Therefore, x(t) = eAtx0 is the solution of (?) above. We also can prove (not here) that this solution is unique.

Note: Since this is a “time-invariant” differential equation (A is constant), if the initial time is not 0 but rather
t0, the solution to (?) is given by:

x(t) = Φ(t, t0)x0 = eA(t−t0)x0

An Important Property of Φ(t, t0), for arbitrary t0, t1, t.

Φ(t, t0) = Φ(t, t1)Φ(t1, t0)

Proof: The unique solution of:

(?) ẋ(t) = Ax(t), x(t0) = x0

is given by x̄(t) = Φ(t, t0)x0. Suppose that at time t1, x̄(t1) = x1. Consider again equation (?) and develop its
solution for initial condition x1 at time t1. In particular, we can write: ¯̄x(t) = Φ(t, t1)x1. Since the solution to
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(?) is unique (both solutions pass from x1 at time t1) we must have for all t, t1, t0 and all x0 that:

x̄(t) = ¯̄x(t)

This implies:

Φ(t, t0)x0 = Φ(t, t1)x1

Φ(t, t0)x0 = Φ(t, t1)Φ(t1, t0)x0

Φ(t, t0) = Φ(t, t1)Φ(t1, t0)

In particular, let t = t0, and t0 = 0, t1 = 1. This becomes:

Φ(0, 0)︸ ︷︷ ︸
I

= Φ(0, 1)︸ ︷︷ ︸
e−A

Φ(1, 0)︸ ︷︷ ︸
aA

e−AeA = I

and we conclude that eA is invertible for any constant matrix A. This is a very important result that we
state as a Theorem:

Theorem 1: Le A be some n× n real matrix. Then eA , exp(A) is an invertible matrix:

exp(A) : A −→ eA ∈ G`(n,R)

Let the set of n× n skew symmetric matrices (i.e., A = −AT ) be denoted by so(n).

Proposition: Let A ∈ so(n). Then eA is an orthogonal matrix (i.e., eA · (eA)T = I.

proof: From Theorem 1 above we know that eA is invertible. In fact,

eA e−A︸︷︷︸
(eA)−1

= I

since −A = AT

eA · eA
T

= eA · (eA)T = I

directly from the Peano-Baker series.
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