
ME/SE 740

Lecture 5

3-D Rigid Body Motions and Coordinate Transformations

Summary from last lecture:

Figure 1: Rigid Motions

Dual interpretation of T :

T :

(
cos θ − sin θ
sin θ cos θ

)
,

(
x
y

)
• Coordinate Transformation

• Rigid Body Motion

Algebraic law of composition:

S :

[
cosφ − sinφ
sinφ cosφ

]
,

[
u
v

]
T :

[
cos θ − sin θ
sin θ cos θ

]
,

[
x
y

]

T ◦ S :

(
cos(φ+ θ) − sin(φ+ θ)
sin(φ+ θ) cos(φ+ θ)

)
,

(
cos θ − sin θ
sin θ cos θ

)(
u
v

)
+

(
x
y

)
For coordinate transformations: T3 = T1 ◦ T2.
For rigid body motions: T̄3 = T2 ◦ T1.
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Consider now the the planar kinematic chain shown below:

Figure 2: 3-Link Kinematic Chain

The coordinate frames O0, O1, O2, O3 are all right-handed (positive direction of angles is couter-clockwise).

The orientation of the end effector frame is:

(
cos θ3 − sin θ3
sin θ3 cos θ3

)
The position of the origin of frame 3 relative to the predecessor frame is:

(
r3 cos θ3
r3 sin θ3

)
Working backwards the position and orientation of point “Q” and the tool frame with respect to joint 2 which
is at the distal end of link 1, is:

(
cos(θ2 + θ3) − sin(θ2 + θ3)
sin(θ2 + θ3) cos(θ2 + θ3)

)
,

(
cos θ2 − sin θ2
sin θ2 cos θ2

)(
r3 cos θ3
r3 sin θ3

)
+

(
r2 cos θ2
r2 sin θ2

)
Working all the way back to the base frame (0-frame) the position and orientation of Q and the tool frame is:

(
cos θ1 − sin θ1
sin θ1 cos θ1

)(
cos θ2 − sin θ2
sin θ2 cos θ2

)(
cos θ3 − sin θ3
sin θ3 cos θ3

)
,

(
cos θ1 − sin θ1
sin θ1 cos θ1

)[(
cos θ2 − sin θ2
sin θ2 cos θ2

){(
cos θ3 − sin θ3
sin θ3 cos θ3

)(
r3
0

)
+

(
r2
0

)}
+

(
r1
0

)]
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Which can be expressed as:

(
cos(θ1 + θ2 + θ3) − sin θ1 + θ2 + θ3)
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3)

)
,

(
r1 cos θ1
r1 sin θ1

)
+

(
r2 cos(θ1 + θ2)
r2 sin(θ2 + θ2)

)
+

(
r3 cos(θ1 + θ2 + θ3)
r3 sin(θ1 + θ2 + θ3)

)
The next question we would like to explore is what happens in three dimensions. Rotation in the plane can be
thought of as a mapping :

(
x
y

)
7−→

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
We can think of this as a mapping in 3-space expressed as:

 x
y
z

 7−→
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


︸ ︷︷ ︸

R(z,θ)

 x
y
z



Where R(z, θ) is rotation about the z-axis, also referred to as “yaw.”

Rotation about the y-axis R(y, θ), also referred to as “pitch” is expressed as:

 x
y
z

 7−→
 cos θ 0 sin θ

0 1
− sin θ 0 cos θ


︸ ︷︷ ︸

R(y,θ)

 x
y
z



Rotation about the x-axis R(x, θ), also referred to as “roll” is expressed as:

 x
y
z

 7−→
 1 0 0

0 cos θ − sin θ
0 sin θ cos θ


︸ ︷︷ ︸

R(x,θ)

 x
y
z



Rotations in 2-D commute. Rotations in 3-D do NOT commute (in general).

Consider the net rotation of a 90◦ rotation about the z-axis, followed by a 90◦ rotation about the y-axis:

 0 0 1
0 1 0
−1 0 0

 0 −1 0
1 0 0
0 0 1

 =

 0 0 1
1 0 0
0 1 0


Compare this with rotation of 90◦ rotation about the y-axis, followed by a 90◦ rotation about the z-axis:

 0 −1 0
1 0 0
0 0 1

 0 0 1
0 1 0
−1 0 0

 =

 0 −1 0
0 0 1
−1 0 0


Clearly, the right-hand-sides of the above two equations are NOT equal.
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If A,B are 3× 3 proper (right hand coordinate system) rotation matrices it is generally the case that AB 6= BA.

In general, coordinate transformations or rigid body motions in space are represented by pairs:

 nx ox ax
ny oy ay
nz oz az

 px
py
pz


Consider the rotation in 3-D shown in the following figure:

Figure 3: 3-D Rotation

There are 9 parameters hat characterize this rotation and there are 6 constraints that these parameters satisfy.
Therefore this leaves 9− 6 “degrees of freedom:”

n2x + n2y + n2z = 1

o2x + o2y + o2z = 1

a2x + a2y + a2z = 1

nxox + nyoy + nzoz = 0

nxax + nyay + nzaz = 0

oxax + oyay + ozaz = 0
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An important consequence of the orthonormality relations above is the following:

 nx ny nz
ox oy oz
ax ay az


︸ ︷︷ ︸

RT

 nx ox ax
ny oy ay
nz oz az


︸ ︷︷ ︸

R

=

 1 0 0
0 1 0
0 0 1



That is, if R is a proper 3× 3 rotation matrix then RTR = I. This implies that RT is the left inverse of R, but
a very simple Linear Algebra calculation shows that any left inverse is a right inverse and hence RRT = I, and
that RT = R−1.

Inverse transformations. Consider the composition of two rigid transformations:

 n2x o2x a2x
n2y o2y a2y
n2z o2z a2z

 n1x o1x a1x
n1y o1y a1y
n1z o1z a1z

 ,

 n2x o2x a2x
n2y o2y a2y
n2z o2z a2z

 p1x
p1y
p1z

+

 p2x
p2y
p2z


Suppose this is equal to the identity transformation (no rotation, no translation):

 1 0 0
0 1 0
0 0 1

 ,

 0
0
0


This means that:

 n2x o2x a2x
n2y o2y a2y
n2z o2z a2z

 =

 n1x o1x a1x
n1y o1y a1y
n1z o1z a1z

−1

=

 n1x o1x a1x
n1y o1y a1y
n1z o1z a1z

T

and

 p2x
p2y
p2z

 = −

 n2x o2x a2x
n2y o2y a2y
n2z o2z a2z

 p1x
p1y
p1z

 = −

 n1x n1y n1z
o1x o1y o1z
a1x a1y a1z

 p1x
p1y
p1z


which is analogus to the 2-D case. In particular the “inverse” of

 nx ox ax
ny oy ay
nz oz az

 ,

 px
py
pz

 , is

 nx ny nz
ox oy oz
ax ay az

 , −

 nx ny nz
ox oy oz
ax ay az

 px
py
pz


It will be convenient to adopt short-hand matrix notation:

 nx ox ax
ny oy ay
nz oz az

←→ R,

 px
py
pz

←→ ~r

Spatial rotations and their composition can be tought of as:

5



(R,~r), (S,~s)

(SR, S~r + ~s) = (S,~s) ◦ (R,~r)

A wonderfully useful fact is that we can associate rigid transformations or motions with 4× 4 matrices:

(R,~r) ←→
(
R ~r
0 1

)
=


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1


which implies that composition of rigid body motions can be represented by matrix multiplication:

(S,~s) ◦ (R,~r)←→
(
S ~s
0 1

)(
R ~r
0 1

)
=

(
SR S~r + ~s
0 1

)
and 

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1


−1

=


nx ny nz −~n · ~p
ox oy oz −~o · ~p
ax ay az −~a · ~p
0 0 0 1
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