ME/SE 740
Lecture 23

Introduction to Lagrangian Mechanics

An idealized model of a robot has n-masses (point masses) interconnected by a set of links:

m;

Figure 1: Idealized Three Link Manipulator

Let (z; y; 2i)T be the coordinates of the i-th point mass. Each

i3 xi(ﬁl,ﬁg,...,ﬁn)
Yi = yi(01,02,...,0,)
Zi Zi(91;927~~~79n)

is a function of the joint angles 6;. Let X;,Y;, Z;, be the components of the total force acting on the i-th point
mass. Then we have:

Multiplying both sides of theses equations by:

we obtain (on summing):
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We next observe that all terms in the expression are functions of 61,6s,...,
z;(01,...,0,). Hence:
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Also z; =



Similarly,

_ Y ; Jy;

Hence,

"1 .. .
Z §ml(x3 + 9?2 4 £2) = kinetic energy of the system = T'(01,02,...,0,,01,02,...,6,)
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The expression (xx) is just
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and equation (x) becomes:
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This expression will be distilled still further but to do this we need an amazing fact about transmission of forces
through a linkage. Consider the position relationship:

Ty = fi(01,...,0n)

(for the i-th particle in our system). Suppose there are no forces acting on the system except a force F, on 7. Let
this force move the system by an amount ¢Z; corresponding to (infinitesimal) movement d6;, for (j =1,...,n)
of each joint. Then with 7; being the torques induced in the joints we have:

0%, - F; = z]: 80,7
work measured w.r.t the i-th particle ———

total work from joint motions
(where 7; are torques induced in the joints)

This equation may be re-written as:

Now
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Hence, we have:
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This equation is valid for any “imaginary” infinitesimal displacement 56 (PRINCIPLE OF VIRTUAL WORK).

Hence:

8fi T 0 _ =
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Consider now the manipulator shown below where = f(6) and the Jacobian is given by J = %. What the
manipulator Jacobian tells us is the following:

i=Jb

how velocities are transmitted from joints to the end-effector, and

F=J'F

how a force vector at the end-effector is felt as torques at the joints.

Figure 2: Manipulator with End-Effector

What about singularities in J7? For effective transmission of forces, singularities are a good thing.

From above we have:
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This can be expressed as:
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where M(01,0s,...6,,) is a symmetric, positive semidefinite (the components of which are left to you to work
out as an exercise).

In terms of the notation for the problem at hand we have:
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(Actually, there should be a superscript or something on the 7;’s to record the fact that these are torques corre-
sponding to the force acting on the i-th point mass.)

Returning to (') we have:
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where T]i is the force/torque at the j-th joint corresponding to the net force applied to the i-th point mass, and

@Q; is the net force/torque on the j-th joint.

Theorem 1: Suppose the configuration of a dynamical system may be specified by coordinates 61,65, . . ., 0,, and
suppose the kinetic energy (corresponding to any possible motion) may be written 7' = T'(61,602, . ..,0,;61,62,...,6,),
then the equations of motion for this system are given by:

dor or .
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where @); is the i-th generalized force acting on the system.

Remark 1: In robotics, this formulation of Newton’s 24 Law is quite natural, since torques and forces from
actuators are applied to the joints.

Remark 2: There may be a potential energy function V(61,60s,...,6,) denoting the path independent work
done in moving the system from some reference configuration (6%,63,...,60%) to (61,6s,...,60,). This potential
energy gives rise to conservative generalized forces @); = — oV

56,
Theorem 2: Suppose the configuration of a dynamical system may be specified by coordinates 61, 6s, . .., 0, and
suppose kinetic energy (corresponding to any possible motion) may be written T' = T'(01,0a, ..., 0,;61,02,...,6,),

and the potential energy (corresponding to any possible configuration) may be written V' = V(01,60,...,6,),
then the equations of motion for this system are given by:
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where 7; is the i-th generalized (exogenous) force affecting the variable 0;.

Corollary: If we define the Lagrangian L = T'—V, then Lagrange’s equations of motion (or the Euler-Lagrange
equations) may be written
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Hamilton’s Interpretation: Principle of Least Actions

Define the action:



Then §S = 0, where §.5 = variation in .S that occurs when we vary the coordinates of the path (6, 0) by an infinites-
imal amount. When variation about given path is thus = 0, the value of S along the path may be a local maximum
or minimum in the set of all paths having the same beginning and end points. This is like a first derivative test.
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This last equation comes from the fact that:
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where that first term on the right is zero because 6(¢) and 6(t) + 66(t) have the same endpoints at to, ¢;.

Now suppose (0(t),0(t)) defines a curve minimizing S among all possible curves taking on prescribed end point
values at ty,t;. Then along this curve:
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For € > 0 sufficiently small, S + §5 < S, contradicting the assumed local minimality of S.

Therefore, trajectories which minimize the action ftzl L(9, é)dt satisfy the Euler-Lagrange equation
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