
ME/SE 740

Lecture 23

Introduction to Lagrangian Mechanics

An idealized model of a robot has n-masses (point masses) interconnected by a set of links:

Figure 1: Idealized Three Link Manipulator

Let (xi yi zi)
T be the coordinates of the i-th point mass. Each xi

yi
zi

 =

 xi(θ1, θ2, . . . , θn)
yi(θ1, θ2, . . . , θn)
zi(θ1, θ2, . . . , θn)


is a function of the joint angles θi. Let Xi, Yi, Zi, be the components of the total force acting on the i-th point
mass. Then we have:

mi

 ẍi
ÿi
z̈i

 =

 Xi

Yi
Zi


Multiplying both sides of theses equations by: 

∂xi

∂θj
∂yi
∂θj
∂zi
∂θj


we obtain (on summing):
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(?)
∑
i

mi(ẍi
∂xi
∂θj

+ ÿi
∂yi
∂θj

+ z̈i
∂zi
∂θj

) =
∑
i

(Xi
∂xi
∂θj

+ Yi
∂yi
∂θj

+ Zi
∂zi
∂θj

)

But

∂ẋi

∂θ̇j
=

∂

∂θ̇j
(
∂xi
∂θ1

θ̇1 +
∂xi
∂θ2

θ̇2 + . . .+
∂xi
∂θn

θ̇n) =
∂xi
∂θj

Hence

ẍi
∂xi
∂θj

= ẍi
∂ẋi

∂θ̇j

=
d

dt
(ẋi

∂ẋi

∂θ̇j
)− ẋi

d

dt
(
∂xi
∂θj

)

=
d

dt
(ẋi

∂ẋi

∂θ̇j
)− ẋi(

∂2xi
∂θj∂θ1

θ̇1 + . . .+
∂2xi
∂θj∂θn

θ̇n)

=
d

dt
(ẋi

∂ẋi

∂θ̇j
)− ẋi

∂

∂θj
(ẋi)

=
d

dt
(ẋi

∂ẋi

∂θ̇j
)− ẋi

∂ẋi
∂θj

=
d

dt
{ ∂

∂θ̇j
(
1

2
ẋ2i )} −

∂

∂θj
(
1

2
ẋ2i )

Returning to (?) we find that:

∑
i

mi(ẍi
∂xi
∂θj

+ ÿi
∂yi
∂θj

+ z̈i
∂zi
∂θj

) =
∑
i

{ d
dt

∂

∂θ̇j
(
1

2
miẋ

2
i )−

∂

∂θj
(
1

2
miẋ

2
i )

+
d

dt

∂

∂θ̇j
(
1

2
miẏ

2
i )− ∂

∂θj
(
1

2
miẏ

2
i )

+
d

dt

∂

∂θ̇j
(
1

2
miż

2
i )− ∂

∂θj
(
1

2
miż

2
i )}

(??) =
d

dt

∂

∂θ̇j
(
∑
i

1

2
mi(ẋ

2
i + ẏ2i + ż2i ))− ∂

∂θ̇j
(
∑
i

1

2
mi(ẋ

2
i + ẏ2i + ż2i ))

We next observe that all terms in the expression are functions of θ1, θ2, . . . , θn, θ̇1, θ̇2, . . . , θ̇n. Also xi =
xi(θ1, . . . , θn). Hence:

ẋi =
d

dt
(xi(θ1, . . . , θn))

=
∂xi
∂θ1

θ̇1 + . . .+
∂xi
∂θn

θ̇n
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Similarly,

ẏi =
∂yi
∂θ1

θ̇1 + . . .+
∂yi
∂θn

θ̇n

żi =
∂zi
∂θ1

θ̇1 + . . .+
∂zi
∂θn

θ̇n

Hence,

n∑
i

1

2
mi(ẋ

2
i + ẏ2i + ż2i ) = kinetic energy of the system = T (θ1, θ2, . . . , θn, θ̇1, θ̇2, . . . , θ̇n)

The expression (??) is just

d

dt

∂T

∂θ̇j
− ∂T

∂θj

and equation (?) becomes:

?′
d

dt

∂T

∂θ̇j
− ∂T

∂θj
=

n∑
i=1

(
∂xi
∂θj

∂yi
∂θj

∂zi
∂θj

)

 Xi

Yi
Zi


This expression will be distilled still further but to do this we need an amazing fact about transmission of forces
through a linkage. Consider the position relationship:

~xi = fi(θ1, . . . , θn)

(for the i-th particle in our system). Suppose there are no forces acting on the system except a force ~Fi on ~xi. Let
this force move the system by an amount δ~xi corresponding to (infinitesimal) movement δθj , for (j = 1, . . . , n)
of each joint. Then with ~τj being the torques induced in the joints we have:

δ~xi · ~Fi︸ ︷︷ ︸
work measured w.r.t the i-th particle

=
∑
j

δθj~τj︸ ︷︷ ︸
total work from joint motions

(where ~τj are torques induced in the joints)

This equation may be re-written as:

δ~xi · ~Fi = ~τ · δ~θ

Now
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δ~xi =
∂fi
∂θ
· δ~θ

=⇒

δ~xi · ~Fi = δ~θ T (
∂fi
∂θ

)T · ~Fi

Hence, we have:

δ~θ T (
∂fi
∂θ

)T · ~Fi = δ~θ T · ~τ

This equation is valid for any “imaginary” infinitesimal displacement δ~θ (PRINCIPLE OF VIRTUAL WORK).

Hence:

(
∂fi
∂θ

)T · ~Fi = ~τ

Consider now the manipulator shown below where x = f(θ) and the Jacobian is given by J = ∂f
∂θ . What the

manipulator Jacobian tells us is the following:

ẋ = Jθ̇

how velocities are transmitted from joints to the end-effector, and

~τ = JT ~F

how a force vector at the end-effector is felt as torques at the joints.

Figure 2: Manipulator with End-Effector

What about singularities in JT ? For effective transmission of forces, singularities are a good thing.

From above we have:
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m

 ẍi
ÿi
z̈i

 =

 Xi

Yi
Zi


∑
i

mi(ẍi
∂xi
∂θj

+ ÿi
∂yi
∂θj

+ z̈i
∂zi
∂θj

) =
∑
i

(Xi
∂xi
∂θj

+ Yi
∂yi
∂θj

+ Zi
∂zi
∂θj

)

d

dt

∂T

∂θ̇j
− ∂T

∂θj
=

∑
i

(Xi
∂xi
∂θj

+ Yi
∂yi
∂θj

+ Zi
∂zi
∂θj

)

and

ẋi =
∂xi
∂θ1

θ̇1 + . . .+
∂xi
∂θn

θ̇n

where the kinetic energy is given by:

T =

n∑
i

1

2
mi(ẋ

2
i + ẏ2i + ż2i )

This can be expressed as:

T (θ1, θ2, . . . , θn) =
1

2
(θ̇1, θ̇2, . . . , θ̇n)M(θ1, θ2, . . . , θn)


θ̇1
θ̇2
...

θ̇n


where M(θ1, θ2, . . . θn) is a symmetric, positive semidefinite (the components of which are left to you to work
out as an exercise).

In terms of the notation for the problem at hand we have:

fi(θ) =

 xi(θ)
yi(θ)
zi(θ)

 =

 xi(θ1, θ2, . . . , θn)
yi(θ1, θ2, . . . , θn)
zi(θ1, θ2, . . . , θn)



∂fi
∂θ

=


∂xi

∂θ1
∂xi

∂θ2
. . . ∂xi

∂θn

∂yi
∂θ1

∂yi
∂θ2

. . . ∂yi
∂θn

∂zi
∂θ1

∂zi
∂θ2

. . . ∂zi
∂θn


The force relation is:

~τ =


τ1
τ2
...
τn

 =



∂xi

∂θ1

∂yi
∂θ1

∂zi
∂θ1

∂xi

∂θ2

∂yi
∂θ2

∂zi
∂θ2

...
...

...

∂xi

∂θn

∂yi
∂θn

∂zi
∂θn


 Xi

Yi
Zi


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(Actually, there should be a superscript or something on the τi’s to record the fact that these are torques corre-
sponding to the force acting on the i-th point mass.)

Returning to (?′) we have:

d

dt

∂T

∂θ̇j
− ∂T

∂θj
=

n∑
i=1

(
∂xi
∂θj

∂yi
∂θj

∂zi
∂θj

)

 Xi

Yi
Zi

 =

n∑
i=1

τ ij = Qj

where τ ij is the force/torque at the j-th joint corresponding to the net force applied to the i-th point mass, and
Qj is the net force/torque on the j-th joint.

Theorem 1: Suppose the configuration of a dynamical system may be specified by coordinates θ1, θ2, . . . , θn, and
suppose the kinetic energy (corresponding to any possible motion) may be written T = T (θ1, θ2, . . . , θn; θ̇1, θ̇2, . . . , θ̇n),
then the equations of motion for this system are given by:

d

dt

∂T

∂θ̇i
− ∂T

∂θi
= Qi (i = 1, . . . , n)

where Qi is the i-th generalized force acting on the system.

Remark 1: In robotics, this formulation of Newton’s 2nd Law is quite natural, since torques and forces from
actuators are applied to the joints.

Remark 2: There may be a potential energy function V (θ1, θ2, . . . , θn) denoting the path independent work
done in moving the system from some reference configuration (θ?1 , θ

?
2 , . . . , θ

?
n) to (θ1, θ2, . . . , θn). This potential

energy gives rise to conservative generalized forces Qj = − ∂V
∂θj

.

Theorem 2: Suppose the configuration of a dynamical system may be specified by coordinates θ1, θ2, . . . , θn, and
suppose kinetic energy (corresponding to any possible motion) may be written T = T (θ1, θ2, . . . , θn; θ̇1, θ̇2, . . . , θ̇n),
and the potential energy (corresponding to any possible configuration) may be written V = V (θ1, θ2, . . . , θn),
then the equations of motion for this system are given by:

d

dt

∂T

∂θ̇i
− ∂T

∂θi
= −∂V

∂θi
+ τi (i = 1, . . . , n)

where τi is the i-th generalized (exogenous) force affecting the variable θi.

Corollary: If we define the Lagrangian L = T −V , then Lagrange’s equations of motion (or the Euler-Lagrange
equations) may be written

d

dt

∂L

∂θ̇i
− ∂L

∂θi
= τi (i = 1, . . . , n)

Hamilton’s Interpretation: Principle of Least Actions

Define the action:

S =

∫ t1

t0

Ldt

=

∫ t1

t0

T − V dt
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Then δS = 0, where δS = variation in S that occurs when we vary the coordinates of the path (θ, θ̇) by an infinites-
imal amount. When variation about given path is thus = 0, the value of S along the path may be a local maximum
or minimum in the set of all paths having the same beginning and end points. This is like a first derivative test.

S + δS =

∫ t1

to

L(θ + δθ, θ̇ + δθ̇)dt

=

∫ t1

to

L(θ, θ̇) +
∂L

∂θ
δθ +

∂L

∂θ̇
δθ̇ + o(δθ)︸ ︷︷ ︸

h. o. t. in δθ, δθ̇

dt

=

∫ t1

to

L(θ, θ̇) +
∂L

∂θ
δθ − d

dt

∂L

∂θ̇
δθ + o(δθ)dt

This last equation comes from the fact that:

∫ t1

t0

∂L

∂θ̇
δθ̇dt =

∂L

∂θ̇
δθ

t1
t0
−

∫ t1

t0

d

dt

∂L

∂θ̇
δθdt

where that first term on the right is zero because θ(t) and θ(t) + δθ(t) have the same endpoints at t0, t1.

Now suppose (θ(t), ˙θ(t)) defines a curve minimizing S among all possible curves taking on prescribed end point
values at t0, t1. Then along this curve:

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0

Otherwise, let

δθ(t) = ε(
d

dt

∂L

∂θ̇
− ∂L

∂θ
) (ε > 0)

then

S + δS =

∫ t1

t0

L(θ, θ̇)dt−
∫ t1

t0

ε(
d

dt

∂L

∂θ̇
− ∂L

∂θ
)2dt+ o(ε)

For ε > 0 sufficiently small, S + δS < S, contradicting the assumed local minimality of S.

Therefore, trajectories which minimize the action
∫ t1
t0
L(θ, θ̇)dt satisfy the Euler-Lagrange equation

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0
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