
ME/SE 740

Lecture 22

Extended Jacobian

EXTENDED JACOBIAN APPROACH TO RESOLUTION OF REDUNDANCY:

If redundancy is resolved by means of a functional constraint G(θ) = 0, we define the extended Jacobian:

Je =

 J

∂G
∂θ


Before we proceed, let us return to the last example in Lecture 21 (i.e., the three link manipulator) and develop
Je when G(θ) = sin2θ2 + sin2θ3. The Extended Jacobian is given below, followed by two plots: the first is a 3-D
plot of detJe = 2(s23(s3c3 − s2c2) + s2s3(c3 − c2)); and the second shows link angles θ2, θ3 that make detJe = 0.

Je =

 −s1 − s12 − s123 −s12 − s123 −s123
c1 + c12 + c123 c12 + c123 c123

0 2s2c2 2s3c3



Figure 1: 3-D Plot of detJe
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Figure 2: θ2, θ3 that make det Je equal to zero
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Note that along trajectories satisfying the constraint that:(
ẋ
0

)
= Jeθ̇

the joint space trajectories are formally given by the differential equation:

θ̇ = J−1e

(
ẋ
0

)
But to make this rigorous we need to know when Je will be singular. Certainly whenever J = ∂f

∂θ is singular,
but by proper choice of G, such mechanical singularities can be avoided. Are there other singularities?

Je =

(
J
Gθ

)
where the rows comprising Gθ are partial derivatives of the constraint function. For simplicity we will restrict
our discussion to the case m = n− 1, degree 1 redundancy.

Now

Je(J
† ... ~n) =

(
J
Gθ

)
(JT (JJT )−1

... ~n)

=

(
I 0

ξ1 . . . ξn−1 Gθ~n

)
(?)

where J† = JT (JJT )−1 and is an n × (n − 1) matrix. Thus there are potential problems in inverting Je ⇔
Gθ · ~n = 0⇔ (one of Gθ or ~n are zero or Gθ lies in the row space of J).

Note that (?) provides a formula whereby J−1e may be explicitly written as:

J−1e = (J†
... ~n)

(
I 0

− ξ1
Gθ~n

. . .− ξn−1

Gθ~n
1

Gθ~n

)

=

(
J† − ~n · ξT

Gθ~n

...
~n

Gθ~n

)
Now

θ̇ = J−1e

(
ẋ
0

)
= J†ẋ − ~n · ξT

Gθ~n
ẋ

and since

ξT = (ξ1, . . . , ξn−1) = GθJ
†

we have

θ̇ = J†ẋ− ~n ·GθJ†ẋ
Gθ · ~n

= J†ẋ+ v(t)~n
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where

v(t) = −GθJ
†ẋ

Gθ · ~n
Consider the conditions where invertibility of Je is in question:

Gθ · ~n = 0

Case: ~n = 0

~n = λ(J1, − J2, . . . , (−1)n+1Jn)

where λ is a scalar and Jk is the k-th principal minor of J

~n = 0 ⇔ rankJ < m ⇔ configuration is kinematically singular

Case: Gθ = 0

In this case, numerator and denominator entries can cancel in

v(t) = −GθJ
†ẋ

Gθ · ~n
resulting in the potential singularity being ignorable.

Case: ~n 6= 0, Gθ 6= 0

This is a truly singular situation. We have Gθ belonging to the row space of J . The satisfaction of the constraint
requires Gθ θ̇ ≡ 0. But Gθ = yTJ for some m-vector y. Hence we must have

yTJθ̇ = 0

and thus yT ẋ = 0 since ẋ = Jθ̇. Therefore, we cannot move the end-effector in the direction y and continue to
satisfy the constraint.

Definition: Configurations corresponding to Gθ 6= 0, ~n 6= 0 but Gθ · ~n = 0 are called algorithmic singularities.

Example

Consider the planar manipulator

(
x
y

)
=

(
c1 + c12 + c123
s1 + s12 + s123

)
The constraint maximizing sin2θ2 + sin2θ3 is θ2 = θ3. With this constraint, if we examine

∂G
∂θ · J

†

∂G
∂θ · ~n
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we find that in lowest terms, the common denominator of the entries in this vector is:

(sinθ2 + sin(2θ2))|~n|2

This vanishes when |~n|2 = 0 (not of interest) and when θ = ± 2π
3 . This is a true algorithmic singularity wherein

the manipulator places its end-effector on its base.

For redundant manipulators:

1. Brockett showed that in general we cannot rule out the possibility of singularities.

2. While instantaneously optimizing a figure of merit regarding configurations provides a useful approach
to resolution of kinematic redundancy, in general any such approach will be associated with algorithmic
singularity.

Other work on the resolution of kinematic redundancy:

Pathwise Resolution of Kinematic Redundancy

Consider the following expression: ∫ T

0

(
1

2
θ̇TW−1θ̇ + g(θ))dt (A)

Theorem Joint space trajectories which optimize (A) satisfy

θ̈ = J†W (ẍ− J̇ θ̇) + PW (ẆW−1θ̇ +Wgθ) (??)

where

PW = (I − J†WJ)
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is the weighted null space projection operator of the Jacobian, J, and

J†W = WJT (JWJT )−1

and J†W is the weighted pseudo-inverse of J .

Proof: This theorem follows from a variational argument in which the joint space trajectory variations δθ are
constrained to lie in the direction of the null space of J . The Euler-Lagrange operator defined by the functional
(A) is:

d

dt
(W−1θ̇)− ∂g

∂θ

and if θ(·) minimizes (A) over all trajectories which vary with respect to θ(·) in the direction kerJ(θ(t)) (i.e., with
respect to all trajectories corresponding to the given operational space path x(·)), it follows that θ(·) must satisfy

PW {W [
d

dt
(W−1θ̇)− ∂g

∂θ
]} = 0 (B)

Note that PW is the orthogonal projection onto the null space of J to the inner product defined by the symmetric
positive definite matrix W−1. If we differentiate ẋ = Jθ̇ with respect to t, we obtain

ẍ = J̇ θ̇ + Jθ̈

which may be equivalently written as

θ̈ = J†W (ẍ− J̇ θ̇) + PW v (C)

for an appropriate choice of v. Multiplying both sides of this equation by the projection operator PW and noting
that PWJ

†
W = 0, we obtain

PW θ̈ = PW v.

Using (B), we find that this implies

PW v = ẆW−1θ̇ +W
∂g

∂θ

and substituting this into (C) proves the theorem.

Typical Boundary Conditions:

I. Initial Value Conditions:

x(t0) = f(θ(t0))

ẋ(t0) = J(θ(t0))θ̇(t0)

II. Two-point Boundary Values:

x(t0) = f(θ(t0))

x(tf ) = f(θ(tf ))
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III. Natural Boundary Conditions:

PW θ̇(t0)) = 0

PW θ̇(tf )) = 0

IV. Periodic Boundary Conditions: if x satisfies x(0) = x(T ), the objective is to find trajectories which satisfy
(??) subject to θ(0) = θ(T ) and θ̇(0) = θ̇(T )

Homotopy Continuation Methods Applied to Path-wise Resolution of Kinematic Redundancy

Problem:

min

∫ T

0

(
ε

2
‖θ̇‖2 + (1− ε)g(θ))dt

with

θ(0) = θ(T ), θ̇(0) = θ̇(T )

εn̂ · θ̈ = (1− ε)G(θ)

where

G(θ) =
∂g

∂θ
(θ) · n̂(θ)

Reference: D. P. Martin, J. B., J. M. Hollerbach, “Resolution of kinematic redundancy using optimization
techniques,” IEEE Trans. on Robotics and Automation, 5(4), pp. 529-533.
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