
ME/SE 740

Lecture 17

6-R Single Strand Kinematic Chains
and the Inverse Kinematics Problem

From last lecture we see that for such kinematic chains we have:

T 0
6 = A1A2 · · ·A6

where (for the Elbow manipulator):

Ak =


cos θk − sin θk cosαk sin θk sinαk ak cos θk
sin θk cos θk cosαk − cos θk sinαk ak sin θk

0 sinαk cosαk dk
0 0 0 1



A1 =


cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0

0 1 0 0
0 0 0 1



Ai =


cos θi − sin θi 0 ai cos θi
sin θi cos θi 0 ai sin θi

0 0 1 0
0 0 0 1

 , i = 2, 3

A4 =


cos θ4 0 − sin θ4 a4 cos θ4
sin θ4 0 cos θ4 a4 sin θ4

0 −1 0 0
0 0 0 1



A5 =


cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0

0 1 0 0
0 0 0 1



A6 =


cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0

0 0 1 0
0 0 0 1


Using the trigonometric identity:

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2
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we can express the product A1A2 · · ·A6 as (where we denote cos(θ1 + θ2 + θ3) as c123, etc.)

A1A2 · · ·A6 =
c1c234c5c6 − s1s5s6 − c1s234s6 −c1c234c5s6 + s1s5s6 − c1s234c6 c1c234s5 + s1c5 a4c1c234 + a3c1c23 + a2c1c2
s1c234c5c6 + c1s5c6 − s1s234s6 −s1c234c5c6 − s1s234c6 − c1s5s6 s1c234s5 − c1c5 a4s1c234 + a3s1c23 + a2s1c2

s234c5c6 + c234s6 −s234c5c6 + c234c6 s234s5 a4s234 + a3s23 + a2s2
0 0 0 1


The Inverse Kinematics Problem

The problem can be simply stated as: Given a nonlinear relationship f(θ) = x, solve for θ given x.

As a first case, consider the following inverse kinematics problem in the plane with a 2-link manipulator (see
figure below) where we are given (x, y) (the coordinates of the end-effector) and seek to find the θ1, θ2 that
correspond to it. In fact, we are interested in knowing how many solutions exist:

Figure 1: Two link manipulator

We have:

(
x
y

)
=

(
r1 cos θ1 + r2 cos(θ1 + θ2)
r1 sin θ1 + r2 sin(θ1 + θ2)

)

Let:

x1 = cos θ1, y1 = sin θ1, x2 = cos(θ1 + θ2), y2 = sin(θ1 + θ2)
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This substitution transforms a system of two nonlinear equations in 2 unknowns into a system of 4 equations in
4 unknowns as can be seen below:

x = r1x1 + r2x2, y = r1y1 + r2y2, x21 + y21 = 1, x22 + y22 = 1

Bezout’s Theorem: Consider a family of n polynomial equations in n unknowns. An upper bound on the
number of solutions (complex) (if it is finite) by the product of the degrees of the polynomials.

Elimination Theory:

1) x = r1x1 + r2x2, 2) y = r1y1 + r2y2, 3) x21 + y21 = 1, 4) x22 + y22 = 1

Solve the 2nd equation and write:

r22y
2
2 = (y − r1y1)2

Multiply the 4th equation by r22:

r22x
2
2 + r22y

2
2 = r22

Use the last two equations to eliminate y2:

r22x
2
2 + (y − r1y1)2 = r22

Use this equation and equation 1) above to eliminate x2:

r22x
2
2 = (x− r1x1)2, which yields (x− r1x1)2 + (y − r1y1)2 = r22

Through this elimination process we end up with 2 equations and 2 unknowns:

(x− r1x1)2 + (y − r1y1)2 = r22

x21 + y21 = 1

Let us re-write these two equations and examine what they mean “geometrically:”

(x1 −
x

r1
)2 + (y1 −

y

r1
)2 =

r22
r21

x21 + y21 = 1
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One can see that the solution of these two equations represents the intersection of two circles (see figure below):

Figure 2: Two Solutions

These two solutions correspond to the two manipulator configurations “Elbow Up” and “Elbow Down:”

Figure 3: Two Configurations

It is unfortunate that the Bezout bound is not tight. Don Pieper’s Thesis (1968) predicted 64, 000 solutions for
general 6-dof mechnisms:

A1(θ1)A2(θ2)A3(θ3)A4(θ4)A5(θ5)A6(θ6) =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1


Make the same substitutions:

xi = cos θi, yi = sin θi, x2i + y2i = 1 add constraints
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Compute the product of the degrees:

• 12 equations of degree 6 in xi, yi

• 6 equations of degree 2

• Product of the degrees: 61226 = 139, 314, 069, 504

Multiplicities of solutions can change: This is something that can usefully be understood using “Inverse Function
Theorem” ideas (i.e., there exist locally unique solutions when J is invertible, |J | 6= 0):

(
x
y

)
=

(
f1(θ1, θ2)
f2(θ1, θ2)

)
=

(
r1 cos θ1 + r2 cos(θ1 + θ2)
r1 sin θ1 + r2 sin(θ1 + θ2)

)
Then:

J =

(
∂f1
∂θ1

∂f1
∂θ2

∂f2
∂θ1

∂f2
∂θ2

)
=

(
−r1 sin θ1 − r2 sin(θ1 + θ2) −r2 sin(θ1 + θ2)
r1 cos θ1 + r2 cos(θ1 + θ2) r2 cos(θ1 + θ2)

)
That makes:

detJ = r1r2(sin(θ1 + θ2) cos θ1 − sin θ1 cos(θ1 + θ2))

= r1r2 sin θ2

Kinematic singularity exists when θ2 = 0, or θ2 = 180◦.

Note: Kinematic singularities are configurations where the Jacobian function looses rank:

Figure 4: Two Configurations
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