ME/SE 740
Lecture 10

Lie Groups I

Review
e Geometric Relationships in the plane R? and space R?
e Group Theory

e Matrix exponentials

Definition: A subgroup of the group of all n x n invertible matrices is called a Lie Group (matrix Lie Group)
if it is also a closed sub-manifold (you can do calculus on it).

Example: The “winding line” that is dense on the 2-torus is not a Lie Group.
Definition: A vector space V' (over R) is a Lie Algebra if in addition to the vector space structure there is

defined a binary operation:

[,]: VxV — V called “Lie Bracket”

satisfying the following properties:

i) bilinearity property [a1v1 + agva,w] = ai[vi,w] 4+ agfve,w] for all wvi,ve,w €V, ay,a2,€R
i1) skew symmetry [v,w] = —[w,v] forall v,weV
141) Jacobi Identity [v, [w, 2]] + [w, [z,v]] + [2, [v,w]] =0 forall v,w,z€V

Three 3 x 3 Examples

1. Vector cross product in R?, v,w,e R3, [v,w] = vxw €R3
2. s0(3), vector space of 3 x 3 skew-symmetric matrices, (with [4, B] = AB — BA)

3. s0(2), set of all 2 x 2 matrices with trace = 0, (with [A, B] = AB — BA)

Given a matrix Lie Group G, we wish to study the tangent space at the identity. Let S(¢) be a curve in G such
that S(0) = I, S’(0) = A (element in the tangent space). Let R € G. Then T'(t) = RS(t)R~! and T(0) = I.
Hence T7(0) = RS'(0)R~! = RAR™! is in the tangent space at the identity.

Proposition: For any R € G, if A is in the tangent space at the identity, T;G, then RAR™! | is also in T;G.
—_—

conjugation

Proposition: Let R(t) be a curve in G such that R(0) = I, R'(0) = B. Let A be an element of T7G. Then:



i) R(t)AR(t)~tis a curve inT;G

i) 4|, _oR(t)AR(t)"' = BA— AB
proof: statement i) repeats the previous Proposition. To show statement ii) we must evaluate % [R~!(t)].

Note:

R(H)R™'(t) = I, hence R/(t)R(t)~!+ R(t)2E_1)
= R(O)R(0)™'+ R(0)4]|,—o(R7'(t) =0=B-I+1 %|,—o(R'(t))
= 4li—o(R™Y(t) = —R'(0) = —B
— 4] _o(ROARM(E) = R(0)A+ AL|,_o(R™}(t)) = BA— AB

The expression BA — AB is known as the matrix Lie Bracket, [B, A] = BA — AB.

Proposition: Given a matrix Lie Group G, the tangent space at the identity 177G is a Lie Algebra with respect
to this Lie Bracket.

Note: Velocities “live” in some transformed space of Lie Algebras.

Example 1: If J is any nonsingular n X n matrix, the set of all n X n nonsingular matrices M such that
MTJM = J is a group (with respect to ordinary matrix multiplication).

proof: We will show that i) it is closed under matrix multiplication and ii) it is closed under the operation of
taking inverses:

i)

MEJM, = J
MM, = } = (MiMz)"J (M Ma) = My MY TMy My = J
J
i)
MTJM = J, does this imply (M~Y)TJM™=J?
(MTIMM™ = JM' = MY'J=JM"' = J=M""' Mt =M HT M

SPECIAL CASE: J =1, = G=0(n), n xn orthogonal matrices.

Example 2: With n = 2m and
0 I, .
J=1 _ 0 = G =Sp(2m), the symplectic group

Example 3:

S ( In0_1 31 ) — G  the Lorentz group



Let us consider the tangent space at the identity 7;G. Let R(t) be a curve in G. Then R(t)TJR(t) = J (The
invariance property at the group level).

Assume R(0) = I, and write R'(0) = A. Differentiating both sides of the group invariance property at t = 0 we
obtain:

R(O)TJ+JR0)=ATJ+JA=0
This is the corresponding invariance property for the Lie Algebra.
Special Case: J =1, AT + A=0.

Let (X be a set of n x n matrices that is closed with respect to vector space operations and also with respect to
the matrix Lie bracket A, B,e (X = [A,B] = AB—- BA ¢ (X . In other words (X is a matrix Lie algebra.
If (X is such a Lie algebra, the set of all finite products:

eMefzeM ezt Aje Ot R

is the corresponding matrix Lie group.

Example 1: If (X is the Lie algebra of all n x n matrices the corresponding Lie group is the group of n x n
invertible matrices.

Example 2: Let G = SO(3), (set of 3 x 3 orthogonal matrices with determinant equal to 1), and (X = so(3)
(set of 3 x 3 skew symmetric matrices).

Consider the basis for so(3)

0 0 O 0 1 1 0

00 -1 ], 0 0 0

01 0 —1 0 0 0
The Lie bracket of two of them gives the third (possible with a “-” sign)

0 -1 0 00 O 0 0 1

10 01,100 -1 = 0 0 0

0 0 O 01 0 -1 0 O

The group SO(3) can be thought of as all products (t;s € R):

0 0 O 0 01 0 -1 0
0 0 -1 |t 0 0 0 [t 1 0 0 [t
eNO0 10 e\ —1 00 eN0 00

One can show that:
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