ME/SE 740

Lecture 10

Lie Groups I

Review

- Geometric Relationships in the plane \mathbb{R}^2 and space \mathbb{R}^3
- Group Theory
- Matrix exponentials

Definition: A subgroup of the group of all $n \times n$ invertible matrices is called a **Lie Group** (matrix Lie Group) if it is also a closed sub-manifold (you can do calculus on it).

Example: The "winding line" that is dense on the 2-torus is not a Lie Group.

Definition: A vector space V (over \mathbb{R}) is a **Lie Algebra** if in addition to the vector space structure there is defined a binary operation:

 $[\cdot, \cdot]: V \times V \longrightarrow V$ called "Lie Bracket"

satisfying the following properties:

- *i*) bilinearity property $[a_1v_1 + a_2v_2, w] = a_1[v_1, w] + a_2[v_2, w]$ for all $v_1, v_2, w \in V$, $a_1, a_2, \in \mathbb{R}$
- *ii*) skew symmetry [v, w] = -[w, v] for all $v, w \in V$
- *iii*) Jacobi Identity [v, [w, z]] + [w, [z, v]] + [z, [v, w]] = 0 for all $v, w, z \in V$

Three 3×3 Examples

- 1. Vector cross product in \mathbb{R}^3 , $v, w, \in \mathbb{R}^3$, $[v, w] = v \times w \in \mathbb{R}^3$
- 2. so(3), vector space of 3×3 skew-symmetric matrices, (with [A, B] = AB BA)
- 3. $s\ell(2)$, set of all 2×2 matrices with trace = 0, (with [A, B] = AB BA)

Given a matrix Lie Group G, we wish to study the tangent space at the identity. Let S(t) be a curve in G such that S(0) = I, S'(0) = A (element in the tangent space). Let $R \in G$. Then $T(t) = RS(t)R^{-1}$ and T(0) = I. Hence $T'(0) = RS'(0)R^{-1} = RAR^{-1}$ is in the tangent space at the identity.

Proposition: For any $R \in G$, if A is in the tangent space at the identity, T_IG , then $\underbrace{RAR^{-1}}_{conjugation}$, is also in T_IG .

Proposition: Let R(t) be a curve in G such that R(0) = I, R'(0) = B. Let A be an element of T_IG . Then:

i)
$$R(t)AR(t)^{-1}$$
 is a curve in T_IG
ii) $\frac{d}{dt}|_{t=0}R(t)AR(t)^{-1} = BA - AB$

proof: statement i) repeats the previous Proposition. To show statement ii) we must evaluate $\frac{d}{dt}[R^{-1}(t)]$. Note:

$$\begin{split} R(t)R^{-1}(t) &= I, \text{ hence } R'(t)R(t)^{-1} + R(t)\frac{d(R^{-1}(t))}{dt} = 0 \\ \implies R'(0)R(0)^{-1} + R(0)\frac{d}{dt}|_{t=0}(R^{-1}(t)) = 0 = B \cdot I + I \cdot \frac{d}{dt}|_{t=0}(R^{-1}(t)) \\ \implies \qquad \frac{d}{dt}|_{t=0}(R^{-1}(t)) = -R'(0) = -B \\ \implies \qquad \frac{d}{dt}|_{t=0}(R(t)AR^{-1}(t)) = R'(0)A + A\frac{d}{dt}|_{t=0}(R^{-1}(t)) = BA - AB \end{split}$$

The expression BA - AB is known as the matrix Lie Bracket, [B, A] = BA - AB.

Proposition: Given a matrix Lie Group G, the tangent space at the identity T_IG is a Lie Algebra with respect to this Lie Bracket.

Note: Velocities "live" in some transformed space of Lie Algebras.

Example 1: If J is any nonsingular $n \times n$ matrix, the set of all $n \times n$ nonsingular matrices M such that $M^T J M = J$ is a group (with respect to ordinary matrix multiplication).

proof: We will show that i) it is closed under matrix multiplication and ii) it is closed under the operation of taking inverses:

i)

$$M_1^T J M_1 = J \\ M_2^T J M_2 = J$$
 $\implies (M_1 M_2)^T J (M_1 M_2) = M_2^T \underbrace{M_1^T J M_1}_J M_2 = J$

ii)

$$M^{T}JM = J$$
, does this imply $(M^{-1})^{T}JM^{-1} = J$?
 $(M^{T}JM)M^{-1} = JM^{-1} \implies M^{T}J = JM^{-1} \implies J = (M^{T})^{-1}JM^{-1} = (M^{-1})^{T}JM^{-1}$

<u>SPECIAL CASE</u>: J = I, $\implies \mathcal{G} = O(n)$, $n \times n$ orthogonal matrices.

Example 2: With n = 2m and

$$J = \begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix} \implies \mathcal{G} = Sp(2m), \quad \text{the symplectic group}$$

Example 3:

$$J = \begin{pmatrix} I_{n-1} & 0\\ 0 & -1 \end{pmatrix} \implies \mathcal{G} \quad \text{the Lorentz group}$$

Let us consider the tangent space at the identity T_IG . Let R(t) be a curve in \mathcal{G} . Then $R(t)^T JR(t) = J$ (The invariance property at the group level).

Assume R(0) = I, and write R'(0) = A. Differentiating both sides of the group invariance property at t = 0 we obtain:

$$R'(0)^T J + JR'(0) = A^T J + JA = 0$$

This is the corresponding invariance property for the Lie Algebra.

Special Case: $J = I, A^T + A = 0.$

Let Ω be a set of $n \times n$ matrices that is closed with respect to vector space operations and also with respect to the matrix Lie bracket $A, B, \in \Omega \implies [A, B] = AB - BA \in \Omega$. In other words Ω is a matrix Lie algebra. If Ω is such a Lie algebra, the set of all finite products:

$$e^{A_1} \cdot e^{A_2} \cdots e^{A_k}, \ k \in \mathbb{Z}^+, \ A_j \in \mathcal{O} \ , t_j \in \mathbb{R}$$

is the corresponding matrix Lie group.

Example 1: If α is the Lie algebra of all $n \times n$ matrices the corresponding Lie group is the group of $n \times n$ invertible matrices.

Example 2: Let G = SO(3), (set of 3×3 orthogonal matrices with determinant equal to 1), and $\mathcal{U} = so(3)$ (set of 3×3 skew symmetric matrices).

Consider the basis for so(3)

$$\left\{ \left(\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \right\}$$

The Lie bracket of two of them gives the third (possible with a "-" sign) as:

$$\left[\left(\begin{array}{rrrr} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right), \left(\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right) \right] = \left(\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)$$

The group SO(3) can be thought of as all products $(t'_i s \in \mathbb{R})$:

$$e^{\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array}\right)t_{1}} e^{\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array}\right)t_{2}} e^{\left(\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)t_{3}}$$

One can show that:

$$e^{\left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & 0 & -1\\ 0 & 1 & 0 \end{array}\right)t_1} =$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} t_1 + \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} t_1^2 + \frac{1}{3!} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} t_1^3 + \frac{1}{4!} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} t_1^4 + \cdots$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos t_1 & -\sin t_1 \\ 0 & \sin t_1 & \cos t_1 \end{pmatrix}$$