
ME/SE 740

Lecture 10

Lie Groups I

Review

• Geometric Relationships in the plane R2 and space R3

• Group Theory

• Matrix exponentials

Definition: A subgroup of the group of all n×n invertible matrices is called a Lie Group (matrix Lie Group)
if it is also a closed sub-manifold (you can do calculus on it).

Example: The “winding line” that is dense on the 2-torus is not a Lie Group.

Definition: A vector space V (over R) is a Lie Algebra if in addition to the vector space structure there is
defined a binary operation:

[·, ·] : V × V −→ V called “Lie Bracket”

satisfying the following properties:

i) bilinearity property [a1v1 + a2v2, w] = a1[v1, w] + a2[v2, w] for all v1, v2, w ∈ V, a1, a2,∈ R
ii) skew symmetry [v, w] = −[w, v] for all v, w ∈ V

iii) Jacobi Identity [v, [w, z]] + [w, [z, v]] + [z, [v, w]] = 0 for all v, w, z ∈ V

Three 3× 3 Examples

1. Vector cross product in R3, v, w,∈ R3, [v, w] = v × w ∈ R3

2. so(3), vector space of 3× 3 skew-symmetric matrices, (with [A,B] = AB −BA)

3. s`(2), set of all 2× 2 matrices with trace = 0, (with [A,B] = AB −BA)

Given a matrix Lie Group G, we wish to study the tangent space at the identity. Let S(t) be a curve in G such
that S(0) = I, S′(0) = A (element in the tangent space). Let R ∈ G. Then T (t) = RS(t)R−1 and T (0) = I.
Hence T ′(0) = RS′(0)R−1 = RAR−1 is in the tangent space at the identity.

Proposition: For any R ∈ G, if A is in the tangent space at the identity, TIG, then RAR−1︸ ︷︷ ︸
conjugation

, is also in TIG.

Proposition: Let R(t) be a curve in G such that R(0) = I, R′(0) = B. Let A be an element of TIG. Then:
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i) R(t)AR(t)−1is a curve inTIG

ii) d
dt |t=0R(t)AR(t)−1 = BA−AB

proof: statement i) repeats the previous Proposition. To show statement ii) we must evaluate d
dt [R

−1(t)].

Note:

R(t)R−1(t) = I, hence R′(t)R(t)−1 + R(t)d(R−1(t))
dt = 0

=⇒ R′(0)R(0)−1 + R(0) d
dt |t=0(R−1(t)) = 0 = B · I + I · d

dt |t=0(R−1(t))

=⇒ d
dt |t=0(R−1(t)) = −R′(0) = −B

=⇒ d
dt |t=0(R(t)AR−1(t)) = R′(0)A + A d

dt |t=0(R−1(t)) = BA−AB

The expression BA−AB is known as the matrix Lie Bracket, [B,A] = BA−AB.

Proposition: Given a matrix Lie Group G, the tangent space at the identity TIG is a Lie Algebra with respect
to this Lie Bracket.

Note: Velocities “live” in some transformed space of Lie Algebras.

Example 1: If J is any nonsingular n × n matrix, the set of all n × n nonsingular matrices M such that
MTJM = J is a group (with respect to ordinary matrix multiplication).

proof: We will show that i) it is closed under matrix multiplication and ii) it is closed under the operation of
taking inverses:

i)
MT

1 JM1 = J
MT

2 JM2 = J

}
=⇒ (M1M2)TJ(M1M2) = MT

2 MT
1 JM1︸ ︷︷ ︸
J

M2 = J

ii)

MTJM = J, does this imply (M−1)TJM−1 = J?

(MTJM)M−1 = JM−1 =⇒ MTJ = JM−1 =⇒ J = (MT )−1JM−1 = (M−1)TJM−1

SPECIAL CASE: J = I, =⇒ G = O(n), n× n orthogonal matrices.

Example 2: With n = 2m and

J =

(
0 Im
−Im 0

)
=⇒ G = Sp(2m), the symplectic group

Example 3:

J =

(
In−1 0

0 −1

)
=⇒ G the Lorentz group
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Let us consider the tangent space at the identity TIG. Let R(t) be a curve in G. Then R(t)TJR(t) = J (The
invariance property at the group level).

Assume R(0) = I, and write R′(0) = A. Differentiating both sides of the group invariance property at t = 0 we
obtain:

R′(0)TJ + JR′(0) = ATJ + JA = 0

This is the corresponding invariance property for the Lie Algebra.

Special Case: J = I, AT + A = 0.

Letα be a set of n×n matrices that is closed with respect to vector space operations and also with respect to
the matrix Lie bracket A,B,∈α =⇒ [A,B] = AB − BA ∈α . In other words α is a matrix Lie algebra.
If α is such a Lie algebra, the set of all finite products:

eA1 · eA2 · · · eAk , k ∈ Z+, Aj ∈α , tj ∈ R

is the corresponding matrix Lie group.

Example 1: If α is the Lie algebra of all n × n matrices the corresponding Lie group is the group of n × n
invertible matrices.

Example 2: Let G = SO(3), (set of 3× 3 orthogonal matrices with determinant equal to 1), and α = so(3)
(set of 3× 3 skew symmetric matrices).

Consider the basis for so(3)


 0 0 0

0 0 −1
0 1 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

 0 −1 0
1 0 0
0 0 0


The Lie bracket of two of them gives the third (possible with a “-” sign) as:

 0 −1 0
1 0 0
0 0 0

 ,

 0 0 0
0 0 −1
0 1 0

 =

 0 0 1
0 0 0
−1 0 0


The group SO(3) can be thought of as all products (t′is ∈ R):

e


0 0 0
0 0 −1
0 1 0

t1

e


0 0 1
0 0 0
−1 0 0

t2

e


0 −1 0
1 0 0
0 0 0

t3

One can show that:

e


0 0 0
0 0 −1
0 1 0

t1

=

3



 1 0 0
0 1 0
0 0 1

+

 0 0 0
0 0 −1
0 1 0

 t1 +
1

2

 0 0 0
0 0 −1
0 1 0

 t21 +
1

3!

 0 0 0
0 0 −1
0 1 0

 t31 +
1

4!

 0 0 0
0 0 −1
0 1 0

 t41 + · · ·

=

 1 0 0
0 cos t1 − sin t1
0 sin t1 cos t1
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